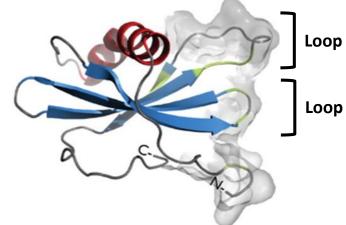


Binding region: two

randomised 9 amino

acid loops

Generation and Characterisation of Formatted Affimer[®] Biotherapeutics


Jenkins E, Laurent F, Adam E, De Jaeger M, Wilcox A⁺, Räuber C⁺, McMorran L⁺, Johnson M⁺, Basran A

[†] Avacta Life Sciences, Wetherby; Avacta Life Sciences, Cambridge, UK

Introduction

Affimer Technology

- The Affimer biotherapeutic protein scaffold is based on human Stefin A
- Two surface loops have been engineered into the scaffold backbone

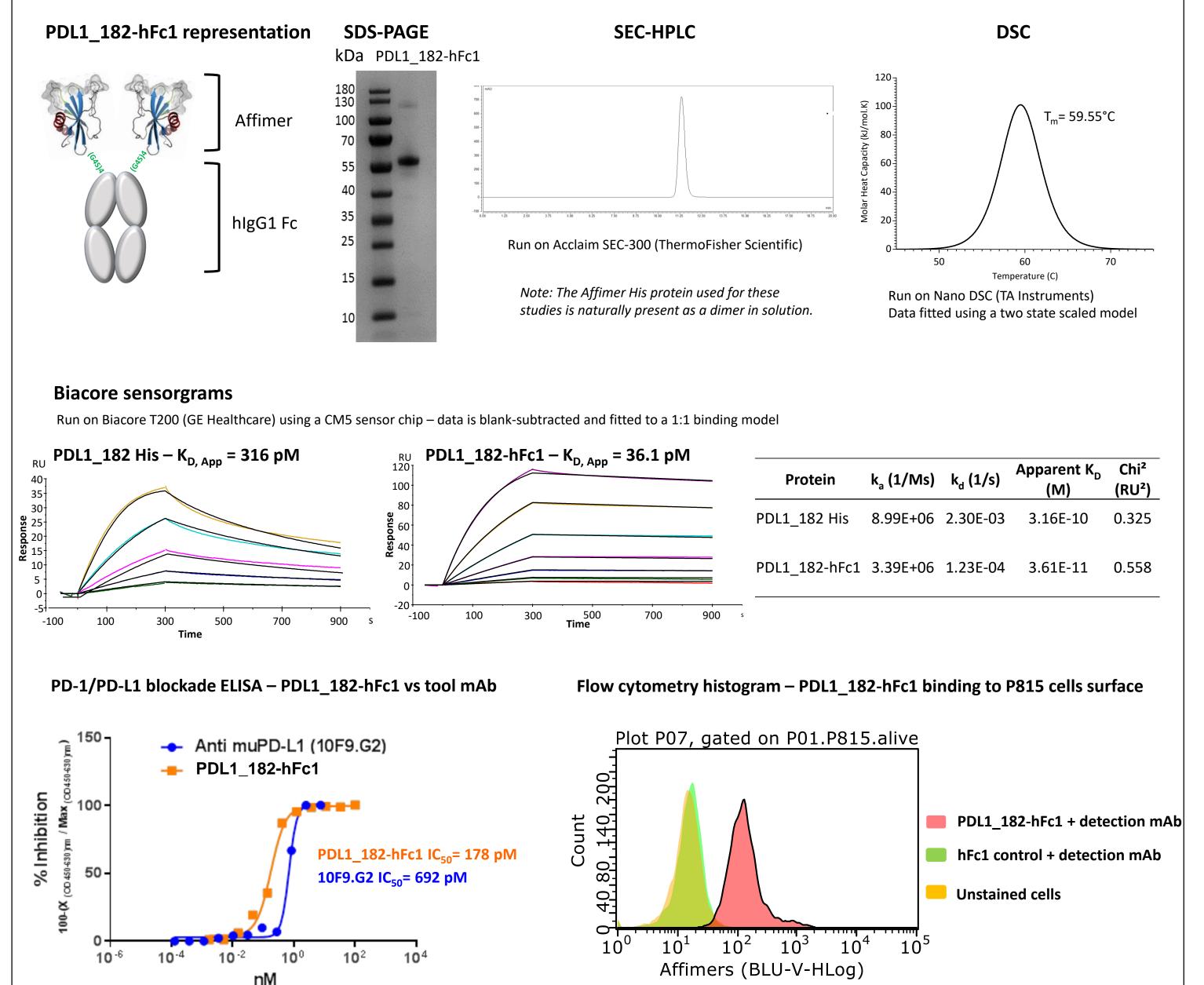
Benefits of Affimer Therapeutics

- **Small size:** 14 kDa, 1/10th the size of an antibody
- Fc-formatted Affimer: provides half-life extension 80 kDa, half the size of an antibody – production in Expi293F cells
- **Multimers**: dimer, trimer, tetramer production at 100's mg/L in *E. coli*

Affimer Protein Formatting – In-line Fusions

- Human Affimer proteins (PDL1_141) fused together by a (Gly₄Ser)₃ linker and carrying a C-terminal 6X His tag
- Expressed in *E. coli* and two-step purification performed using affinity and SEC

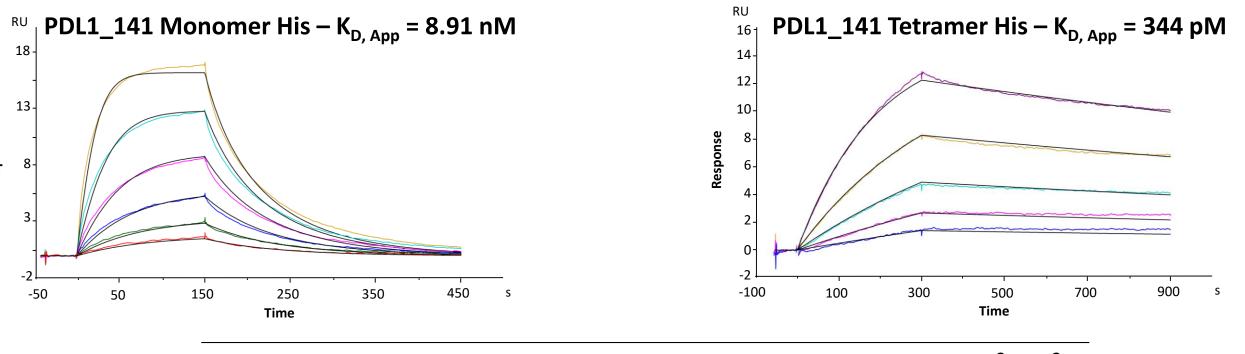
 Phage display compatible – large Affimer phage libraries (1x10¹¹)


- No post-translational modifications on Affimer **proteins**: ease of manufacturing and improved stability
- Improved tissue penetration: small size gives greater potential for increased efficacy

Objectives

- Programmed death-ligand 1 (PD-L1) plays an important role in the modulation of the immune system and has been clinically validated as a target for a number of human cancers with monoclonal antibodies (mAbs)
- Protein scaffold technologies offer an alternative to mAbs as therapeutics due to their flexibility in formatting options
- The objective was to demonstrate that Affimer antagonists of PD-L1 can be formatted for half-life extension (Fc-fusions) or as multimers (in-line fusions) to demonstrate avidity effects

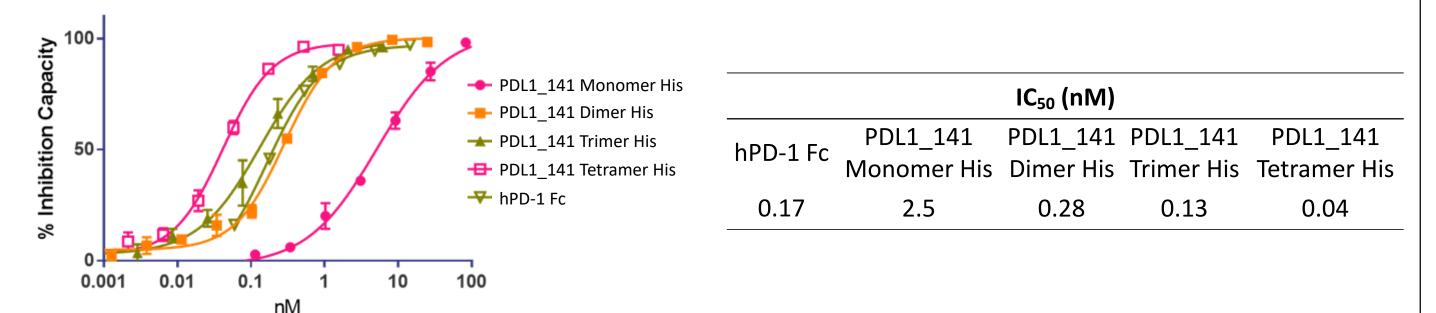
Affimer Protein Formatting – Fc-fusion


- Anti-mouse PD-L1 Affimer protein fused to human IgG1 Fc (PDL1_182-hFc1) using (Gly₄Ser)₄ linker for half-life extension
- Protein expressed in Expi293F cells and purified using Protein A and SEC using an ÄKTA FPLC system (GE Healthcare)

Format of the Affimer protein	Expected MW (kDa)	Yield after one- step purification (mg/L)	Yield after two- step purification (mg/L)
PDL1_141 Monomer His	14	270	56
PDL1_141 Dimer His	25	278	116
PDL1_141 Trimer His	42	212	37
PDL1_141 Tetramer His	56	205	47

Biacore sensorgrams

Run on Biacore T200 (GE Healthcare) using a CM5 sensor chip – data is blank-subtracted and fitted to a 1:1 binding model


Apparent K_D (M) Chi² (RU²) k_a (1/Ms) k_d (1/s) Protein

Affimer-hFc1 key results:

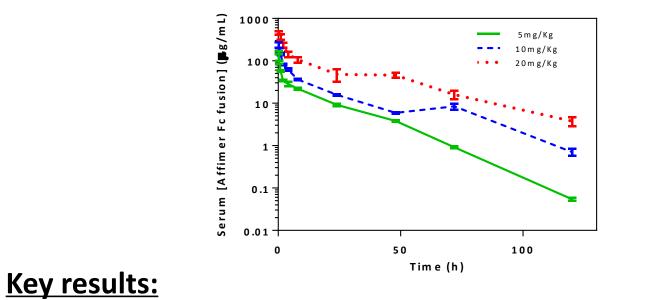
- Transiently expressed from Expi293F cells and purified to yields >100 mg/L
- Has an apparent K_D 10-fold lower than the parent Affimer protein
- Competes against PD-1 for binding to mouse PD-L1 (IC₅₀ = 178 pM)
- Shows specific binding to mouse mastocytoma cells (93.94% of cells) compared to the hFc1 negative control (1.54% of cells)

0.0740 PDL1_141 Monomer His 2.81E+06 8.91E-09 2.51E-02 0.0251 PDL1 141 Dimer His 1.12E+06 5.35E-04 4.79E-10 PDL1 141 Trimer His 4.73E-04 0.0153 1.13E+06 4.18E-10 PDL1 141 Tetramer His 1.01E+06 3.48E-04 0.0292 3.44E-10

Blockade ELISA – In-line fusion Affimer proteins vs hPD-1 Fc

Key results:

- Successful expression and purification of in-line fusion proteins to yields ~40-120 mg/L
- In-line fusion Affimer proteins become more stable as the number of Affimer units in the oligomer increases: T_m (PDL1_141 Tetramer His) > T_m (PDL1_141 Trimer His) > T_m PDL1_141 (Dimer His) > T_m (PDL1 141 Monomer His)
- Affimer proteins formatted as in-line fusion display an apparent K_D up to 25-fold lower than the monomer **Affimer protein**
- In-line fusion proteins' ability to compete with hPD-1 Fc increases as the number of Affimer units in the oligomer increases: IC_{50} (PDL1_141 Monomer His) > IC_{50} (PDL1_141 Dimer His) > IC_{50} (PDL1_141 Trimer His) > IC₅₀ (PDL1_141 Tetramer His)


Conclusions

Pharmacokinetics of PDL1_182-hFc1 in Mouse

- C57BL/6 mice dosing single i.v. injection of PDL1_182-hFc1 at 5, 10, or 20 mg/kg
- Blood samples were collected over 7 days
- The concentration of the Affimer-hFc1 in serum was measured by a fluorescent ELISA

Product	Dose (mg/kg)	Cmax (µg/ml)	AUC min*µg/mL	Terminal Half-life (h)
PDL1_182-hFc1	5	155±10.5	3313.8	20.9±1.3
	10	241±36	5964.6	19.2*
	20	462±46	9852	59.9±5.3

PK parameters of the Affimer-hFc1 – Parameters were calculated with a non linear fit at 2 phases decay. *error could not be determined.

- The serum half-life of PDL1_182-hFc1 was successfully extended
- PDL1 182-hFc1 was well tolerated at all doses administered in mouse

Fc-fusion:

- Affimer proteins can be successfully formatted and expressed to high yields as hFc1-fusion proteins in mammalian Expi293F cells
- The Affimer-hFc1 showed a 10-fold increase in apparent K_D and specifically bound to PD-L1 expressed on a mouse cell line surface. Fusion to hFc1 resulted in half-life extension and the Affimer-hFc1 protein was well tolerated in mouse

In-line fusion:

- Affimer proteins can be successfully formatted and expressed to high yields as in-line fusion proteins (up to a tetramer) in *E.coli*
- In-line fusion Affimer proteins display improved affinity and stability compared to the parent Affimer protein

This work demonstrates that the Affimer technology has the necessary properties for developing a therapeutic platform

Acknowledgements: Anna Tang and Darren Tomlinson, Astbury Centre for Structural and Molecular Biology, University of Leeds, UK

For further information please contact dan.gare@avacta.com or visit www.avacta.com

